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Abstract In this article we introduce a new multiobjective optimizer based on
a recently proposed metaheuristic algorithm named Variable Mesh Optimization
(VMO). Our proposal (multiobjective VMO, MOVMO) combines typical concepts
from the multiobjective optimization arena such as Pareto dominance, density es-
timation and external archive storage. MOVMO also features a crossover operator
between local and global optima as well as dynamic population replacement. We
evaluated MOVMO using a suite of four well-known benchmark function fam-
ilies, and against seven state-of-the-art optimizers: NSGA-II, SPEA2, MOCell,
AbYSS, SMPSO, MOEA/D and MOEA/D.DRA. The statistically validated re-
sults across the additive epsilon, spread and hypervolume quality indicators confirm
that MOVMO is indeed a competitive and effective method for multiobjective
optimization of numerical spaces.

Keywords Multi-objective Optimization - Evolutionary Computation - Variable
Mesh Optimization - Meta-heuristic Optimization

1 Introduction

Saving resources, time and obtaining products with the highest quality are common
objectives to attain in the industrial and business environments. The same can
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be extrapolated to daily life decisions. The decision making processes is usually
governed by the simultaneous consideration of several conflictive goals. This kind
of problems are known as multiobjective optimization problems (MOP), where there
is often no single optimal solution but rather a set of alternatives with different
advantages/limitations trade-offs. In the multiobjective optimization literature,
these are referred to as Pareto optimal solutions or non-dominated solutions [1].

Obtaining the complete Pareto optimal set (PS), i.e., the set of Pareto optimal
solutions, can be a computationally expensive endeavor and, for vast search spaces,
the cost could turn out prohibitive. Due to their parallel nature, population-based
metaheuristic algorithms, in particular evolutionary algorithms (EAs), are able to ap-
proximate the entire Pareto optimal set of a MOP in a single run [23]. Additionally,
population-based EAs have also been successfully applied in single-objective opti-
mization problems (SOPs) given their proved ability to explore the search space
in an inherently concurrent fashion, which results in a higher computational effi-
ciency. Therefore, it becomes a quite natural proposition to develop multiobjec-
tive versions of these population-based optimizers, as they could simultaneously
identify several non-dominated solutions in a single iteration and characterize the
trade-off among their objectives [2].

Variable Mesh Optimization (VMO) is a population-based metaheuristic algo-
rithm created by Puris et al [19] in 2012. It showed competitive results compared
with improved versions of Genetic Algorithms (GA), Particle Swarm Optimization
(PSO) and Differential Evolution (DE) [19]. More recently, VMO has been aug-
mented with niching methods to embrace the multimodal optimization realm [11]
[13] [12] and promising results have been obtained. Therefore, formulating a mul-
tiobjective VMO implementation is the next step towards the scientific maturity
and development of this metaheuristic optimization scheme.

This research work makes the following contributions: (1) we formalize a mul-
tiobjective optimization extension to VMO, termed as MOVMO, and dissect its
algorithmic building blocks; (2) we conduct an experimental analysis between
MOVMO and seven state-of-the-art multiobjective optimizers, namely NSGA-II,
SPEA2, MOCell, AbYSS, SMPSO, MOEA /D and MOEA/D.DRA; (3) we demon-
strate via statistical validation the benefits of the proposed MOVMO technique.

The remaining of this paper is organized as follows: Section 2 describes some
basic concepts pertaining to the domain of multiobjective optimization (MOO).
Sections 3 and 4 unveil the main elements of the canonical VMO formulation
and our multiobjective extension, respectively. The experimental framework is
presented in Section 5 while Section 6 is devoted to the statistical analysis of the
empirical results. Conclusions are outlined in Section 7.

2 Basic Concepts

A multiobjective optimization problem can be mathematically defined as:

minimize F(z) = (f1(z), ..., fm(z))T (1)
subjectto z € 2

where 2 is the (non-empty) decision space and = € 2 is the decision vector. F(z)
consists of m > 2 conflicting objective functions f; : 2 — R,i = 1,...,m where
R™ is the objective space. Notice that maximizing f; implies minimizing - f;.
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In single-objective optimization problems it is easy to determine the best solu-
tion in a population, as this is the solution with the best objective function value.
Nevertheless in MOPs this process is not trivial, as there is no longer a unique
best solution but instead a set of equally attractive solutions. In such a set, some
solutions improve one or more objectives yet exhibit not-so-great values in the rest
of the objectives. These solutions can be formalized using the following definitions:

Definition 1 A vector v = (u1,...,um)? strongly dominates another vector v =
(v1,.. .,vm)T, denoted as u < v, iff Vi € {1,...,m},u; < v;.
Definition 2 A vector v = (u1,...,um)’ weakly dominates another vector v =

(vl,...,vm)T, denoted as u <X v, iff Vi € {1,...,m},u; < v; and 35 € {1,...,m}
such that u; <wv;.

Definition 3 A feasible solution z* € 2 of Equation (1) is called a Pareto optimal
solution, iff #ly € 2 such that y < z*. The set of all the Pareto optimal solutions is
called the Pareto set (PS), denoted as: PS = {z* € 2| Py € 2,y < z*}.

Definition 4 The image of the Pareto set in the objective space is called the Pareto
front (PF): PF ={F(x)|x e PS}.

Population-based multiobjective optimization methods usually do not guaran-
tee to identify the optimal solution but instead, they aim at locating a good Pareto
set that approximates the true Pareto set as much as possible. We are therefore
interested in the algorithmic technique that provides the best approximation to
the true Pareto set for a given problem. The comparison among the Pareto sets
yielded by different multiobjective optimizers is conducted on the basis of quality
indicators that act as quantitative manifestations of performance indices. In this
way, the strengths and weaknesses of the competing approaches are exposed across
different quality indicators.

Definition 5 An me-ary quality indicator I is a function I : ¢ — R, which maps
m sets A1, As...., Ay €W to a real value R.

A quality indicator maps each Pareto set approximation to a real number; the
underlying idea is to quantify the differences in quality among multiple approx-
imation sets [25]. Quality indicators are often reflective of the decision maker’s
preferences.

In this study, we will evaluate the different MOO optimizers according to three
widely used quality indicators: Epsilon, Spread, and Hypervolume. The epsilon indi-
cator family was introduced in [8]. Given a computed approximation front A, this
indicator is a measure of the smallest distance that one would need to translate
every solution in A so that it dominates the Pareto optimal front of this problem.
Spread-based indicators measure the distribution of the individuals in the Pareto
front. The spread technique used in this article was proposed in [4] and gauges the
non-uniformities in the distribution. Similarly to the epsilon indicator, higher val-
ues corresponds to worse behavior. Hypervolume indicator, which was introduced in
[26], calculates the volume of the region (in the objective function space) covered
by members of a non-dominated set of solutions w.r.t. a reference point.
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3 Variable Mesh Optimization

Variable Mesh Optimization (VMO) [19], is a population-based metaheuristic
technique in which the set of solutions (or population) represents a mesh in a
multidimensional space. This mesh is composed of P nodes (n1,...,np), each de-
noting a solution to the underlying optimization problem in an M-dimensional
search space. Each node n; is encoded as a vector of M real-valued numbers
n; = (vi,...,v4); i €{1,..., P}.

The algorithmic parameters are:

the population size P

the maximum number of nodes T generated during the mesh expansion process
the size k of each mesh node’s neighborhood

the maximum number of objective function evaluations C' (used as the stop
criterion)

W

The search process undertaken by VMO can be summarized in three main
phases. First, the mesh is initialized (either randomly or following an inexpensive
heuristic method) with P nodes along the search space. Afterwards, the mesh
goes through an expansion procedure characterized by the generation of other
mesh nodes towards the local optima, the global optimum and the frontier of the
explored space. At this point the mesh has grown from the initial P nodes to
P < T < 3P nodes at the most. The next phase is the mesh contraction, during
which poor solutions as well as those clustered around local optima are removed
from the mesh. The expansion and contraction phases alternate in each iteration
until the stop condition is met. Below is the VMO algorithmic workflow.

— Step 1. [Mesh initialization] Generate P nodes for the initial mesh and select
among them the global best ng.

— Step 2. [Mesh expansion.1] For each mesh node n;, find its closest k nodes
(in the decision space), then select the best neighbor n; in the objective space.
If n; is not the local best, then generate a new node n, toward the local best
by Equation (2). With this step, Z new nodes are created, where Z < P.

— Step 3. [Mesh expansion.2] For each mesh node n; but the global best ng,
generate a new node n; toward the global best by Equation (2). With this
step, X new nodes are created, where X < P — 1.

ny = F(ni,n;, Pr(n;,n)) (2)

where Pr is called the prozimity factor and represents the relationship between
the objective function value (fitness) of the current node and that of its lo-
cal/global optimum. This proximity factor is calculated by Equation (3):

o 1
Prini,ni) = 1+ |fitness(n;) — fitness(n})| 3)

The function F" generates the coordinate v} of the new node n. along the j-th
dimension and can be described by Equation (4):
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m; 1fmj—vj‘>§j/\

rand1() < Pr(n;,n})
vé* + rand2() if‘nTj — vf ‘ <&
rand3() otherwise

(4)

where 7; is the midpoint between vj— and vf, rand1() ~ U(0,1), rand2()
~ U(=¢;,&;) and rand3() ~ U(v},Wj). The notation U(a, b) denotes a uniformly
distributed random number in the interval [a, b] and &; defines the minimum al-
lowed distance for each dimension. These values decrease monotonically during

the run of the algorithm, as depicted by Equation (5):

a0 f ¢ < 0.15C
max; Wi if 0.15C < ¢ < 0.30C
g = DRI 0300 < ¢ < 0.60C (5)
max;ming if 0,600 < ¢ < 0.80C
max;—ming if ¢ > 0.80C

where C' and ¢ are the maximum and current number of objective function
evaluations, respectively, and max;, min; denote the optimization bounds of
the j-th dimension, 5 € {1,..., M}

— Step 4. [Mesh expansion.3] Generate nodes from those in the mesh frontier
as described in [19].

— Step 5. [Mesh contraction.1] Sort nodes according to their fitness values.

— Step 6. [Mesh contraction.2] Apply the adaptive clearing operator, i.e., re-
move from the mesh those nodes that are too close to each other in the decision
space.

— Step 7. [Mesh contraction.3] Select the P best nodes to build the initial mesh
for the next iteration. If needed, randomly generate new nodes to complete the
initial mesh with P nodes for the next iteration.

4 Multi-Objective Variable Mesh Optimization

In this section we describe our proposed VMO extension termed Multiobjective Vari-
able Mesh Optimization (MOVMO). The new algorithm largely follows the canoni-
cal VMO search strategy outlined in Section 3, including the dynamic population
replacement. Because MOVMO is aimed at tackling multiobjective optimization
problems, several traditional algorithmic underpinnings in this field are incorpo-
rated to its design, namely Pareto dominance, objective space density estimation (via
crowding distance) and elitism in the form of an external archive storing the set
of discovered non-dominated solutions.

Algorithm 1 displays MOVMO'’s general workflow. The input parameters P, k
and C are just like in VMO (refer to Section 3). Yet the T parameter (maximum
mesh size after the expansion procedure) in VMO is no longer necessary in this
multiobjective formulation. A new parameter S, the maximum size of the leaders
(Pareto) archive is introduced instead.
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The method starts by generating the initial mesh Mg and initializing the lead-

ers archive L with all the non-dominated solutions in Mg. This archive will only
store non-dominated solutions, (the Pareto optimal approximation found so far).

Algorithm 1: Multiobjective Variable Mesh Optimization (MOVMO)

Input: mesh size P, neighborhood size k, max. obj. func. eval. C, max. archive size S
Output: An approximation L of the true Pareto set L*

1 Generate the initial mesh M = {n;} and calculate the fitness vector F; Vi € {1,..., P}
2 Initialize the leaders archive L with each mesh node n; by Algorithm 2

3 c+1

a4 while ¢ < C do

5 foreach node n; in the current mesh M do

6 n; < the best among the k neighbors of n;

7 if n} < n; (see Definition 1) then

8 | ni < generate a new node by Equations (2) and (6)

9 else

10 L ny < n;

11 ng < apply binary tournament to select a global leader from L

12 ng < crossover(n;,ng)

13 evaluateFitness(ng)

14 add ny to the leaders archive L (see Algorithm 2)

15 if ny < n; (Definition 2) then

16 L Replace n; with ng in the current population

17 | cc+1

18 return L

* 1
Pr(ni.nf) = _ . (6)
L+ /S0 (i) = £5(n7)
For each node n; of the current mesh M, the following steps are carried out:

1. The best node n] among n;’s k nearest neighbors in the decision variable space
is selected (Line 6) according to the dominance criterion described in Section
2. If two or more of these k neighbors are mutually non-dominated, the closest
to n; is picked.

2. If the local optimum dominates n;, a new node n; is generated in that direction
by Equations (2) and (6). (Line 8); otherwise n; is the local optimum itself
(Line 9). Notice that Equation (6) measures the Euclidean distance between
the two mesh nodes n; and n in the objective space and crafts a probability
accordingly.

3. A global leader ngy from the archive L is selected through binary tournament
(Line 11). Two non-dominated solutions from L are arbitrarily picked and the
one with largest crowding distance in L wins the tournament.

4. This elite solution ng is crossed over with the local optimum n; from the pre-
ceding step (Line 12). The best of the two offspring (in terms of dominance,
crowding distance to break ties) is retained.

5. After that, the resulting offspring node n; is evaluated and added to the leaders

archive L (Line 14).
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6. Finally, if n; is weakly dominated by ns, it will be replaced with ns in the
current mesh (Line 15).

MOVMO returns the leaders archive L as the approximation of the Pareto
optimal set found.

Algorithm 2 describes the addition of a new mesh node n; to the bounded
leader archive L. First, all nodes in L that are dominated by the incoming solution
are deleted from the archive prior to nz’s addition. If the archive reached its
maximum size, we drop the node with the lowest crowding distance. This ensures
that a well-spread set of non-dominated solutions is maintained in L.

Algorithm 2: Add the ng solution to the leader archive L

1 foreach n; of L do

2 if ny < n; (Definition 1) then

3 | L+ L—{n;}; /* remove n; from the archive */
4 else if ny =n; || nj < ny (Definition 2) then

5 L exit ; /* discard ng */
6 L+ LU{n.}; /* add n, to the archive */
7 if L.size() > L.mazSize() then

8 recompute crowding distances in L

o | L+« L—{L.worstByCrowdingDistance}; /* remove most crowded solution */

The proposed changes to the classical VMO workflow featured by MOVMO are
aimed at efficiently tackling multiobjective optimization problems. For instance,
MOVMO maintains a leader archive with a set of well-distributed non-dominated
solutions (global leaders) instead of the global best recorded by VMO. Another
example is the substitution of the T-node augmented mesh generation in VMO
with a dynamical node replacement mechanism. The rationale for this decision
was motivated by the large computational effort needed for merging and sorting
two sets (the current mesh of size P and the expanded T-node mesh) in a mul-
tiobjective environment. Moreover, the crowding distance measure applied to the
non-dominated solutions in L plays the role of VMO’s adaptive clearing operator
used in decluttering the heavily explored portions of the decision space.

5 Experimental Framework

Over the years, several studies [8] [5] [24] have suggested how to design an ex-
perimental framework for the validation of new multiobjective optimization tech-
niques. In this research work, we confine ourselves to the guidelines put forth by
K. Deb in [1].
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5.1 Test Functions

The purpose of test functions is to reproduce some of the complications that
a new MOO algorithm could encounter in real-world problems. The underlying
assumption is that should the new algorithm behave well with these functions, it
is reasonable to expect that it will yield similar results when exploring a real-world
problem whose optimization landscape resembles that of the test function(s).

We have chosen four function suites for benchmarking purposes: ZDT [27],
DTLZ [3], WFG([7] and LZ09 [9]. They include convex, non-convex, multimodal,
non-uniformly spaced, multiple Pareto fronts, among others complex fitness land-
scapes.

— The ZDT family contains six functions; ZDT1 and ZDT4 are convex meanwhile
ZDTS3 features a disconnected Pareto front. ZDT6 tests for an optimizer’s abil-
ity to deal with multimodality. The remaining ZDT2 and ZDT6 are non-convex.
In all cases the problems’ dimension vary from 10 to 30, and all functions are
bi-objectives.

— The DTLZ family contains seven functions; in its three-objective version,
DTLZ1 and DTLZ3 are multimodal as well as DTLZ7, which also exhibits a
disconnected Pareto front. The remaining DTLZ2, DTLZ4, DTLZ5 and DTLZ6
are non-convex. In all cases, the problems’ dimension range from 7 to 22.

— The WFG family [7] consists of nine scalable, multiobjective test problems
(WFGL1 - WFG9). WFGL is convex, WFG2 is convex and disconnected. WFG3
is linear. WFG4 to WFG9 are non-convex while WFG4 and WFG9 are multi-
modal. In all cases the problems’ dimension is 6.

— The LZ09 [9] is a more recent family and consists of nine test functions, all of
them are bi-objective except F6, which has three objectives. LZ09 is a general
class of continuous MOO test instances with arbitrary prescribed Pareto set
shapes. F9 has a non-convex Pareto front. In all cases the problems’ dimension
vary from 10 to 30.

5.2 Comparison with State-of-the-Art Algorithms

In this section we briefly describe the seven state-of-the-art MOO methods that
have been selected as MOVMO competitors. They are very popular algorithms
in this arena and have enjoyed well-deserved recognition due to their high per-
formance and efficiency in solving entangled problem instances of different sorts.
These techniques belong to the Genetic Algorithms, Scatter Search, Particle Swarm
Optimization and Decomposition-based Multiobjective Optimizer families.

— MOEA/D was initially proposed in [22] as a decomposition-based multiob-
jective optimizer. MOEA /D breaks down a MOP into a set of single-objective
problems (SOPs) with neighborhood relationship and approximates the Pareto
set by solving these SOPs. In out experiments, we used the MOEA /D version
put forth in [9].

— MOEA/D.DRA (MOEA/D with Dynamic Resource Allocation) [21] is a ver-
sion of the previous algorithm that defines and computes a utility value for
each subproblem. Computational efforts are distributed to these subproblems
based on their utilities.
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— The NSGA-II algorithm [4] was proposed by Deb et al in 2002 as an improve-
ment over an existing genetic-algorithm-based technique for MOPs. It uses
two solutions sets: one for the current population and the other one for the off-
spring population. Selection, crossover, and mutations operators are employed
in each generation to create an offspring population of the same size as the cur-
rent population. Then, both populations are merged. Fast non-dominated sort-
ing from the resulting joint population and the subsequent crowding-distance-
based comparison procedure ensure elitism and diversity in the population that
survives to the next generation. Originally, NSGA-II does not include a leader
archive for storing the best discovered solutions. Instead, the last population
contains the final approximation to the Pareto optimal set.

— SPEA2 [26] was proposed by Zitzler et al. in 2001. This genetic-algorithm-
based technique relies on two solutions sets: one for the current population
and another one for an archive. Selection, crossover, and mutations operators
are employed to fill an archive; then, the non-dominated individuals of both
the original population and the archive are copied into a new population. If the
number of non-dominated individuals exceeds the population size, a truncation
operator based on density estimation is applied.

— MOCell [15] is a cellular genetic algorithm designed by Nebro et al in 2009. It
includes an external archive to store the non-dominated solutions found so far.
This archive makes use of NSGA-II’s crowding distance to maintain diversity
in the population. During the algorithm execution, a number of solutions are
moved back into the population from the archive after each generation, thus
replacing randomly selected population members.

— ADbYSS [16] is an adaptation of the Scatter Search metaheuristic to the mul-
tiobjective domain put forth by Nebro et al in 2008. This algorithm uses an
external archive similar to the one employed by MOCell. The algorithm bor-
rows operators from the evolutionary realm, including polynomial mutation
and simulated binary crossover into the improvement and solution combina-
tion methods, respectively.

— SMPSO [14] is a multiobjective PSO algorithm which utilizes polynomial
mutation as a turbulence factor and an external archive to store the non-
dominated solutions found during the search. It also includes a velocity con-
striction equation, instead of using the upper and lower bounds of each dimen-
sion to clamp the velocity of the particles.

As can be seen, the algorithms chosen for the experimental analysis cover a
wide range of bio-inspired MOO schemes. The first five of them use a density
estimator whereas the last three and MoCell lean upon a neighborhood structure
for the evolution.

5.3 Performance Metrics and Parametric Setup

The performance metrics selected for the empirical analysis are based on the fol-
lowing quality indicators: additive epsilon (IF) [8], spread (Isp) [4] and hypervolume
(Igv) [26]. The first two indicators respectively measure the convergence to the
true Pareto front and the spread of the resulting Pareto front while the last one
gauges both aspects.
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MOVMO has been implemented using jMetal version 4.5 [6], a Java-based
framework that includes implementations of all previously described state-of-the-
art algorithms, test suites (ZDT, DTLZ, etc.) and performance metrics.

In order to ensure a fair comparison among all competing techniques, the fol-
lowing parametric configuration was adopted: population size of 20 for AbYSS and
100 for the rest; the maximum leaders archive size was set to 100 for all algorithms.
NSGA-II, SPEA2 and MOCell are based on genetic algorithms, hence they use the
same crossover, mutation, and selection operators. SBX is the crossover strategy
of choice with distribution index n. = 20 and p. = 0.9 as crossover rate (proba-
bility). For the polynomial mutation operator, we considered a distribution index
of nm = 20 and mutation rate p, = 1/D, where D is the number of decision vari-
ables (solution dimensionality). Finally, binary tournament acts as the selection
operator. In MOEA /D and MOEA /D.DRA, the probability that parent solutions
are selected from the neighborhood was fixed at 0.9. For MOEA /D the number of
weight vectors in the neighborhood of each weight vector and the maximal num-
ber of solutions replaced by each child solution were set to T'= 20 and n, = 2
respectively. Meanwhile, MOEA /D.DRA use T = 10% of the population size and
nr=1% of the population size. The differential-evolution-based implementations
of MOEA/D and MOEA/D.DRA employ a crossover operator with probability
CR = 1.0 and amplification factor of the difference vector equal to F = 0.5. All
experiments have been carried out with 25,000 objective function evaluations as
the stop criterion.!

6 Empirical Results and Statistical Analysis

In this section we statistically analyze MOVMOQO’s performance compared to that
of NSGA-II, SPEA2, AbYSS, MOCell, SMPSO, MOEA /D and MOEA /D.DRA on
the bi-objective (20bj) and three-objective (30bj) configurations of the four test
suites described in Section 5.1. For each algorithm, the median X and inter-quartile
range IQR of each performance metric over 30 independent runs are reported as
measures of central tendency and statistical dispersion, respectively. The best and
second best values of a performance metric are colored in the tables with dark gray
and light gray, respectively. The base number corresponds to the median and the
subscript represents the IQR. Recall that lower values for the additive epsilon and
spread indicators are preferred whereas higher hypervolume values denote superior
performance.

To determine the statistical significance of the obtained results, we will lean on
the Wilcoxon rank-sum test [5]. This nonparametric procedure is often employed
in hypothesis testing to detect significant differences between two samples (in this
case, the performance values of two algorithms) [5]. We have used the R function
wilcox.test(a,b) for that purpose. In all cases, we are interested in identifying
significant differences at the 95% confidence level. This means we will reject the
null hypothesis whenever the obtained p-value is smaller than 5%.

1 The parameter values for each benchmarking algorithm have been drawn from their original
articles.
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6.1 20bj Results
6.1.1 20bj Additive Epsilon Results

Table 1 lists the median and IQR values for the I indicator of the approximation
sets computed by all algorithms. Notice that MOVMO achieved the best (lowest)
values in nine out of twenty-nine test functions and six second best values. SMPSO
is the algorithm with second best overall performance; it attains six first places.

Table 1: I median and IQR values for the 20bj configuration.

MOVMO MOEAD.DRA MOEAD NSGAIL SPEA2 MOCell

ZDT1 | BMAE=0355p204" [.12E —0lo5p_02 2.34E — 0275503 1.32E — 022.4p—03 8.97E — 0312503 6.43E — 0314501
ZDT2 | 540E —035.4p—04 1.88E —Oly7p g2 4.19E — 0231502 1.31E — 025 8.94E — 0316503 5.74E — 0310504
ZDT3 | 5.9E — 0337504 1.88E —O0liap_g2 1.27E —Olsgp_g2 8.68E — 0 9.81E — 0323103 6.77E — 039.05—04
ZDT4  442E —0lzip_g1 1156+ 0011c400 4.10E —Olygp_o1  1.42E — 02; 2.02E — 025 2502 9. 17E 032.05—03
ZDT6 |WABIEE03: 552040 6.64E — 0334503 5.02E — 03195014 L5LE —0220p_03 2.61E — 0247503 — 036.75—04
DTLZl = 3.22E — 032501 3.90E 3.81E — 0324503 T.52E — 0305503 6.28E — 0347003 03 4.33E — 0393501
DTLZ2 |5.4E=0317p—04 | 7.14E — 0399505 7.22E — 0393505 1.26E—0231p-03 814E —03s.4p—o1 5.61E — 0332504 »(»E — 0322503
DTLZ3  8.36e+00s5c+00  1.78¢+0lyseror | 6.61E —O0lzgetron = 1.66e + 001 4ci00  1.70e +0013c400  1.64e + 002.2¢4+00 S02E - 01146400
DTLZ4 [5BIE=03595=010] 7-63E — 0320504 T.60E — 03295014 1.27E —0243p_03 8.16E —03g9p_01 5.67E — 034 0B—0a  1.00e+009.05—01
DTLZ5 = 5.04E — 035.15—04 7.16E — 0371505 T7.17E — 0399505 1.07E — 02202503 7.20E — 031 0503 35 4.98E — 0332504
DTLZ6 = 5.11E —03695—04 7.10E —0329p_05 7.10E — 0370505 3.68E — 023102 2.84E —Olygp g2 7.98E — 02445 02 4165 — 0227502
DTLZ7 = 23le+00255—05 2.32¢+001.75—02  2.33¢+ 0013400 2.3le+ 0016504 23le+0044p 01 [N2BIEHE007.06207 0 2-3le+ 0013¢4+00
WFG1 | 617E 0219502 | 7.79E —Olysp—o2 6.83E — 0113501 | 6.02EB—0lgop_o1  9.57E —Olzop_o1  8.98E —Olsgp—o1  1.09¢ + 0025501
WFG2  3.63E —Ol7op—o1 2.90E — 0256503 2.88E — 0227503  2.03E —0270m—01 2.10E —0270p_01  7.13E —0logg_o3 7.11E —0lg7p_o4
WFG3  2.00e + 0039503 | 2:00e + 0056504 [N20089 005355040 2.00¢ + 0052501 200+ 0024503  2.00e + 00325 03  2.00e+ 00125 03
WFG4 | 1.52B — 0214503 6.17E —029.0p-03 5.25E — 0253503 3.34E — 025503 2.51E — 0245503 [NIATES02506%040 1.54E — 0292504
WFG5 | 6.34E — 0245504 7.30E — 023 0E-04 T-28E — 0259501 841E — 02535 03 6.39E — 02,4504 [NOB34E=026.85%04
WFG6  3.58E — 0233502 2.43E — 025.65-04  3.96E — 0213502 5.74E — 02,1502 3.55E — 0253502
WFG7  [IM0E=027.45%04 2.53E — 02555014 3.61E — 0212502 1.50E — 025.05—04 | 1.49E — 027,504
WFG8  5.12E —0lagp—o1 21958 =015 452010 4.84E — 01 5.14E — 0112502 5.10E — 0119501
WFGY  [IE82E=024.15%03 3.40E — 0216503 3.82E — 0251503 2.14E — 0257503 | 1.99E = 0249503
LZ09.F1  1.80E — 027.05-03 556 T93E =031 25503 1.81E — 028503 2.70E —0230m-02 2.01E — 0244503 3.37E — 0236502
LZ09.F2 233 — 01y op_o, | 18SE— 015 7502 | LT8E—Olzsgons | 1.90E — 010501 L97E —Olsep_oz 301 — 0Ly sp o1 2.90E — 01y 2501
LZ09.F3 1.61E —0l1.05—01 | 120B=0lyap—01 | 243E —0lisg_o1  L30E—0lgap_o3 1.91E —0lg3p_02 LT6E—0ligp_o1 1.93E —0liop_o1
LZ09.F4 1.66E — Olysp—o> | 9.37TE — 0236502 1.95E —0lygr_02 1.65E —Olsgp_g2 1.91E —Oligp_g2 1.84E —Olo7p_o2 1.93E —0lzap_o2
LZ09.F5 1.29E — Olzap—o> = 1.24E —0lgipg2 1.25E —Ole7r_o2 [NIR20ES0L 7pt02l 1.37E —0li7p—g2 L1.79E —O0lsop—02 141E —0l7.9p_o2
LZ09.F7  5.05E — Olagr—o1 4.02E —0la.1p_o1 N2O4EE0L gptorl 3.22E — O0ligp—o1  4.04E —0lo1p_o1  5.60E —0losp_og1  4.77E —Olysp_o1
LZ09.F8  4.32E —0l1sp—o1  3.82E —0ligp_o1  3.68E —0lisp_o1 | 2998 = 0lgrpegs 342E — 013501 A4T4E —0ligp_o1  5.32E —Oligp_o1
LZ09.F9  2.94E — 0ly1p-01 | 2.03E = 0li.1p-01 DUSTEEO0L 052010 2915 —0liap o1 2.72E —Oliop_o1  3.03E —0liop—01  3.26E — 0lgsp_o2

SMPSO
5.50E — 0321504
5.50E — 033,15_04
5.815 — 036.55—04
6.14E — 035.45—04
4.90F — 0337204
BLLOUD) = (ks it
5.52F — 034.85_04
5.97E — 037.05—01
5.59E — 031.75—04
5.165 — 0350501
5.10E — 0356504
2.31e+ 0077505
1.15€ + 003 7502
1.42E — 021.66-03
2.00e + 009.0£ 04
5.30F — 024303
6.35E — 021.15—03
1.73E — 022,103
1.80E — 0215503
3.94E — 013 6502
2.82F — 022 803
8.73E — 031.1E—03
2.59E — 013.7p—02
1.75E — 0124502
1.44E — 0135502
145E — 0ls.op_o2
5.19E — 0lg.1£—02
5.73E — 01
2.27E — 015 3502

The Wilcoxon test results confirm that MOVMO yielded better performance

at 95% significance level on the following functions: ZDT1, ZDT2, ZDT3, ZDT6,
DTLZ2 and WFG7. For WFG9, MOCell and MOVMO's performance differences
are not statistically significant. Furthermore, MOVMO reports the worst perfor-
mance on DTLZ3 and WFG3 with respect to its peers. Although the MOVMO
results obtained on DTLZ1, DTLZ5, DTLZ6, WFG4 and WFG5 ranked second
place, the Wilcoxon test indicates that they are not statistically significant. Con-
versely, despite the fact that MOVMO never climbed to the first or second place
in any function of the new LZ09 family, the Wilcoxon test results reveal that the
performance differences between MOVMO’s I values and the second place in
LZ09.F5 exhibited by MOEA /D.DRA are not statistically significant at the 95%
level.

Friedman test results on the I;" performance metric are reported in Table 2.
MOVMO is the second best-ranked algorithm following SMPSO whereas SPEA2
and AbYSS do not generally converge well to the true Pareto front of the functions
under consideration. The fact that the top rank is above three indicates that
there is no clear winner across all four benchmark function families but that some
algorithms are better than the rest in coping with certain intricacies in a function’s
landscape.
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Table 2: Friedman test. Average ranks of the algorithms in expected IF with two objectives
(distributed according to x2 with 7 degrees of freedom: 17.471264367816207).

Algorithm Average Rank

SMPSO 3.207
MOVMO 3.759
NSGAII 4.310
MOEAD 4.517
MOEAD.DRA 4.759
MOCell 5.069
SPEA2 5.103
AbYSS 5.276

6.1.2 20bj Spread Results

Table 3 depicts the median and IQR values for the Igp indicator. In this case
MOVMO achieves the best (lowest) values in twelve out of twenty-nine functions
and second in another nine functions. AbYSS with ten first places and eight sec-
ond ones and SMPSO with five first and five second places were the next best-
performing schemes. The Wilcoxon test confirms that the MOVMO spread values
obtained on ZDT1, ZDT3, ZDT6, DTLZ6, WFG1, WFG9 and LZ09.F3 are sta-
tistically significant at the 95% level, unlike those in ZDT2 (vs. SMPSO), WFG3
and WFG6 (vs. MOCell), LZ09.F4 (vs. AbYSS) and LZ09.F5 (vs. AbYSS and
MOCell). Once again, MOVMO exhibits a poor performance on ZDT4 compared
with all algorithms but MOEA/D and MOEA/D.DRA. However, the observed
performance gain of MOCell (2nd place in WFG2) over MOVMO is not judged
statistically significant at the aforesaid level by the Wilcoxon test.

Table 3: Isp median and IQR values for the 20bj configuration.

SMPSO

MOVMO MOEAD.DRA MOEAD NSGAIL SPEA2 ABYSS MOCell
ZDT1 | 6AIE —02158-05 | 654E —0lg7p 02 B357E —Ols7p o2 3.63E —Olzop—o2 148E —O0li9p02 1.00E — 011602 7-97E — 0216502
ZDT2 | 6.92B — 0210502 9.15E —0lo7p_o1  3.00E—0l155-01 3.82E —0ly3p—02 1.53E —0ly8g—g2 1.09E —Ologp_g2 8.77E — 028502
ZDT3 | T02E 017503 1.08¢+ 0069502 9.99E —0ly1p_g2 7.50E —0lysg—02 T7.06E —0lg2p_o3 | T.05E —0ly7p—02 7.08E —Olrop—_o3
ZDT4  5.92E —0larp_o1  143¢+ 0054502  1.00e +001.65-01 3.96E —Olgsg—o2 2.31E —0ligp-o1 = 131E—0lyspo2 1.3 0138502
ZDT6 [N6I0LE=021 62020 1.87E —0l1sp—o1 1.52E —0l34p_o3 3.64E ) 2.30E — 0lg.4p—o2 = 844E — 0216502 1.0 0113502
DTLZ1  9.07E —023.95-01  1.15¢+ 0063501 [NSBSEE021 355010 3.77E — 0lg.op—02 1.76E —0li.0p—01 1.27E —0ly3p_o2  1.16E —Olgop—o2
DTLZ2 | 1.08E = 0la gm0z 2.36E —O0lagp o2 1.84E — 01y g o3 3.83E —0lsop o2 1.46E — 0114502 [NEO3EE0L 1 p2020 1.19E —0lo4p o2
DTLZ3  617E —Olzgop—o2 1.28¢+ 0015501 9.44E —0lysp_o1  9.56E —0liop-o1  9.77E —O0li7p_o1 8.77E —Olyrg—o1  1.06e+ 00455 01
DTLZ4 1285 —Olsop_o1  3.16E—Olgag_o2 191E—0li75 02 3.93E—0l7om o2 149E —Olggp_o1 [NNIBEE01555%0a0 1.00e + 005 5501
DTLZ5  1.12E —Olasp_o2 246E —0l30p—02 1.88E —0lzop_03 3.74E —0lzzp_o2 1.50E —O0li4p_o2 | LO9E = Olgapoa 1.19E —0ls0p 02
DTLZ6 | 9.80B—02105-02  1.95E —0l.0p-02 1.86E —0lizp_o1 8.50E —0lzgp_o1  8.24E —0lisp_o1 2.20E —Olsop—o2 1.81E —0liop—o1
DTLZT  7T.77E —Olyszp—oa 9.31E —O0lzsp_o02  8.96E —0lzipo2 824E—0lisp_o2 7.88E —Olyap—o3 NGIE=0l5 765040 7.78E — 01125 01
WFG1 [[3.04B—0loup—o2 | 1.03¢+00265-01 1.05¢+00285-01 7.23E —0lgap—02 6.52E —0lyzp_o2 6.88E —Olsip—o2  6.45E — 0l7.05—02
WFG2  757E —0liap—o2 Llle+0034p-03 1.10e+ 0072503 7.87TE—0lisp_o2 T.61E —0lsep_o3 [NTATES0ls0p20s) 7.51E — 0135503
WFG3  [I368E =01 552021 5.63E —0logp_o3 5.63E —Olysp_oa  5.88E —Ologp_o2 4.37E—0liap g2 3.77E —Olgop_o3  3.71E — 0lg.35—03
WFG4  131E —0lygp—g2 6.56E —0li3p_o1 5.05E —Olsop—02 3.89E —0lzgip_o2 2.69E —0losp oo [H26EE0I0 52020 1.34E — 0lo.45—02
WFG5  131E —0ly7m_g2 4.63E —Olssp_o3 4.61E —Oligg_o3 4.11E—0lyrp_g2 2.87E —0logp g2 | L31E=0laap_gz  1.41E —0lsop—_o2
WFG6 [ LI9E = 0l38p—g2 | 4.37E —0l37 411E — 0l105 03 3.86E —0lsip_02 250E —0lzip_g2 L40E —Olysp_o2  1.35E = 0lysp—o2
WFG7 | LI12E —0lygmp_g2 4.17E — 01 4.11E — 0155 3.76E — 0 _02  243E —Ola3p_oo [NIOSEE010p20a 1.23E —0ls.15_02
WFGS8 | 5.65E —0lgem_g2 7.11E — 0l 6.33E — Olg.o 6.41E — 0 02 E—0lg1p—02 587 —Oloop_o2 [15B6E=01555"0
WFGY  [[L37E =01 8p-02 484E — Ol19p—02  3.89E —Olyig—o2 293E —0loup_g2 | LS0E = 0loop g2 15LE —O0ly
LZ09.F1  4.98E — Ola.7p—o1 291E — Olggp—o3  4.93E —Olggp_o2 48TE —0lzop_o1  2.58E —Olygp_g2 4.24E — 0l
LZ09.F2  1.40e + 001 3501 9.65E = 0l;.4p—01  143¢+0012p-01  1.50e+00115-01 143 +00265-01 146+ 00,
LZ09.F3 WS6AE=015.45205 6.91E — 0110501 T.06E —0li1p-01 T ; 6.36E — 0l;.9p—01  6.43E — 01,
LZ09.F4 | 421E —Olzap—g2  9.12E — 0119501 9.61E —0logp o1 5.81E —Ols7p_g2 5.66E —Olg7p_g2 446E —0lggp—oa 5.10E —0lg.gp_o2
LZ09.F5 | 499E — 0lg.gp—g2 T7.69E — 012501 6.31E—0l 1501 649E —Ol77p_g2 5.81E —Olgsp_g2  5.13E —Olgop—ga  5.26E —0lg.gp_o2
LZ09.F7 = 1.05¢+003.05—01 142 +0013p-01 1.23e+0012p—01  1.37e+001.65-01  1.40e+ 0020501 | 102640050801 | 1.29 + 0044501
LZ09.F8  1.3% +0020p—01  1.53e+0012p_01 | 1.28e+0090p—02 1.3le+00s15—02 1.30e +001.25—01 | 1.00e+0081m—02 | 1.36¢+ 0021501
LZ09.F9  1.52¢+ 0003501 1.15¢+0015p-01  10le+ 00135 01 1.6le+00205-01  1.58¢+ 0002501 1.55e+ 001301 1.60e+ 001 5501

TATE — 0217502
7A3E — 02 6502
7.09E — 0175503
9.28E — 021 602
1.13E — 0lg.op_01
7.07E — 021 7p-02
1.24E — 0lo1 502
1.43E — 011.2¢+00
1.16E — 011 7p—02
1.30E — 011 7p_02
1.12E — 011 602
T77TE — 0192604
1.00e + 003 8 £—02
8.02E — 012.35—02
3.79E — 0175503
4.55E — 0lg.65—02
1.39E — 0l2.1p—02
1.50E — 0l2.05—02
1.56E — 01,
7.28E — 014
2.05E — 011 7502
1.34E — 014 o502
8.39E — 0111 p—o1
T.97E — 0111 5—0
6.87TE — 011 g5_o1
6.78E — 011 2p_o1
1.40€ + 002,45 01
1.44e + 005.05—01
8.85E — 011.55—01

Friedman test results on the spread performance metric are reported in Table
4. They obey a x? distribution with seven degrees of freedom at a 1% significance
level (p-value< 0.01).
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Table 4: Friedman test. Average ranks of the algorithms in expected Igp with two objectives
(distributed according to x2 with 7 degrees of freedom: 91.42528735632169).
Algorithm Average Rank

MOVMO 2.345
AbYSS 2.621
MOCell 3.690
SMPSO 3.966
SPEA2 5.000

MOEAD 5.207
NSGAII 6.172

MOEAD.DRA 7.000

The spread performance indicator gauges the distribution of solutions along the
Pareto front; therefore in the context of the experiments carried out, MOVMO is
the algorithm with better distribution of the non-dominated solutions, followed by
the AbYSS and MOCell methods. It is interesting to note that the more recently
proposed decomposition-based schemes (MOEA/D and MOEA/D.DRA) do not
fare well along this front.

6.1.3 20bj Hypervolume Results

Table 5 unfolds the median and IQR values corresponding to the hypervolume
indicator. MOVMO exhibits the best (highest) values on the ZDT1, ZDT2, ZDT3,
ZDT6, and all the functions in the DTLZ family except DTLZ3. It also climbs to
the top on WFG1 and WFGT7. However, the hypervolume values between MOVMO
and AbYSS (2nd place) on DTLZ7 are not statistically significant. The same can
be stated for the perceived advantages of SPEA2 and NSGA-II (1st and 2nd place
on WFG2), MOCell (2nd place in WFG4), SMPSO and MOCell (1st and 2nd place
in WFG5), NSGA-II (2nd place in LZ09.F2), MOEA/D (2nd place in LZ09.F3)
and MOEA/D, MOEA/D.DRA (1st and 2nd place in LZ09.F9) over MOVMO.
For the rest of the cases, the observed performance differences are statistically
significant at the 95% level, as confirmed by the Wilcoxon test.

The values reached by MOVMO on the Igy indicator (that measures both
convergence and diversity) have corroborated the results obtained by the two pre-
vious indicators. The hypervolume results portrayed in Table 5 point out to the
fact that MOVMO reaches the best (highest) values on thirteen out of twenty-nine
possible benchmark functions, eleven of which are deemed statistically significant
at the 95% level. MOEAD/D had the second best behavior with seven first places
and seven second best values. SMPSO was the third best-performing technique.

Friedman test results on the Igy performance metric are reported in Table 6.

6.1.4 20bj Discussion

Table 7 summarizes the set of pairwise comparisons between MOVMO and the rest
of the algorithms across the three quality indicators for the 20bj configuration.
MOVMO'’s performance was compared to that of the seven state-of-the-art opti-
mizers throughout the twenty-nine benchmark functions (29 x 7 = 203 pairwise
tests). The ‘+’ symbol indicates that MOVMO’s result was statistically significant
compared to the other algorithm, ‘-’ that the result was statistically significant in
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Table 5: Iy median and IQR values for the 20bj configuration.

MOVMO MOEAD.DRA MOEAD NSGAIL SPEA2 ABYSS MOCell SMPSO

ZDT1 5.24E — 0190502 E—0lgsr—03 659E —0lyom 01 6.60E —Olzsm_o1 6.61E —Ols2p 01 6.61E — 0395 01 | 6:62E —0l7.6m—05
ZDT2 1.96E — 0lg.4p—02 3.10E —0lg3p_o3 3.26E —O0ly3p_o4 3.26E —Olgop_g4 3.28E —Olysp_os  3.28E —Olzzp_os  3.29E —Olgap_os
ZDT3 3.82E — 014 1p—g2 4.56E —O0lz7p_g2 5155 — 01y 7p_os 5.14E —0lzs5p_os | 5.06E —0lys5p—03 5.14E —0lyp_o4 5.15E —Ol3 5504
ZDT4 0.00¢ +000.85—02  2.86E —0l37p_o1  6.56E — 0l gp—03 6.52E —0lgop—o3 6.52E — Olggp—_o3 | 6.58E — O0laap_o3

ZDT6 4.01E — Olg7p—o5 | 401E —0lyap_gs 3.89E —Olzop_o3 3.T9E —Olyip_g3 4.00E — 01y 1p_os 3.94E —0ly1p—03 4.01E —0l7.45_05
DTLZ1 0.00¢ +004.55-01 4.93E —0lzsp—03 489 —0lgop_g3 4.88E —01lj1p—g2 4.88E —0lgap_o3 4.91E —0ly 503 | 4.94E — 01y 8504
DTLZ2 210E — 01y 3504 2.10E —0ly05—014 209E—0logp o1 2.10E—0l14p_g1 2.11E —O0lgop_o5 | 2011E=0ls85-05 2.10E—01115-01
DTLZ3  0.00e +000.0e+00  0.00¢ + 000.0e+00 | 2.77E = 021.95—01  0.00¢ +000.0c400  0.00e +000.0c+00  0.00¢ +000.0e00  0.00e + 0014501

DTLZ4 2.09E — 0laop_o4 2.09E -0l 4p—o4 2.09E 0153504 2.10E —0lo1p_o1 | 2.01E—0lgap—05 0.00e +002 1501  2.10E — 01,9504
DTLZ5 211E =0l 0504 211E—0lg1g05 211E—0lasp o1 212E—0l15p_o1 2.12E —Olgrp_o5 | 202E=01575-05 2.12E— 01155 01
DTLZ6 212E — 0lz.sp—05 2.12E —0lzap_o7r 1.80E —0lyop_o2 1.56E —0216p-02 1.24E —O0lg1p—02 1.62E — 0132502 | 212E—0ly7p-05

DTLZ7 3.03E — Ol7.ap_o3  3.04E —0ly1p_o1  3.09E —0lzop_os 3.09E —0lgop o5 | 3.09E=0lgap—os 3.09E —0la1g-o1 3.09E —Oly7p o5
WFG1 249E — 01y 5502 2.89E —O0l7ap_o2 | 5.12B=0l10g—01  4.33E—O0ligp o1 233E—Olisp_o1  3.32E —0li7g-01  1.16E —Olgsp o3
WFG2  5.61E —0lz1p-03 5.62E —Olggp_o1 5.62E —Olysp o1  5.63E — 0lagp_os [563E=012585080 5.60E —Oloop_o3 5.61E —O0lgsp_os  5.61E — 0111503
WFG3  441E — 0113503 441E —0l17p o1 | 441E=0lsgp o5 441E —0ly7p_os 441E—0lgap_o1 441E — 01125 o3 441E = 0119504
WFG4  218E —0l7gg_o1  2.09E —Olirg_o3 2.011E—O0lisp o3 217E —0liog_os 2.18E — Ol s o1 2.02E — 0l2.65—03
WFG5  1.96E —0ls6p—05s 1.95E—0lgip_05 1.95F —O0lsop o5 1.95E —0lzap_oa 1.96E —0lisg_o1 1.96E —Olrsp_o5 1.96E — 0167105
WFG6  1.96E — 010502 2.09E = 0ly.55-04 205E—0ly9p_g2 204E —0ligg_g2 1.83E—Olygp_o2 1.96E —O0lzsp_oo
WFGT 2.09E —Oly35_01 209 —O0lsgm_o1  2.10E —0li9g_os | 201B=0la1p o1 2.10E—0li g o1 2.09E —0lazp o4
WFG8 1.50E = 0lgom_os 1ATE —Olosg_o3 14TE —Olagp_o3 144E —Olgop_o3 14A7E —0logg_os LATE —0li2p_o3
WFG9 2.35E — Ol7.gg_os  2.37TE —Olo1p o3 2.38E —0lagp_o3 | 2.38B=0lggp_o3 2.38E —Olggp o3  2.35E — Olgem—_oa
LZ09.F1  6.53E — 0l1.9m_o3 6.52E — 0lg.6p_o1  6.54E — Ologp_o3  6.52E —Oloup o3  6.52E —Olzgp o3 6.58E — Olg 74
LZ09.F2  5.18E — Ol7.0m_g2 5.20E —0lg1p 02 528E —Ologm g2 4.93E —0ligp_o1  4.50E —O0ligp_o1  3.74E — Ol7.spm_g2
LZ09.F3  5.95E — 01y 70— 6.00E — Olg 5502 5.98E —Olz.gm_o3  5.80E —Olggp_o3 581E—0lg1p_g2 5.82E —Olyom_gs 5.75E — 0112502
LZ09.F4  6.04F — 013703 6.15E — 01y 35 02 6.09E — Ol 7p_o3  5.98E —0lsop_03 5.95E —Olggp_o3 5.95E —Olggp o3 5.84E —0lgap_o3
LZ09.F5  6.07E — 0153003 = 6.15B — 0lgep_o3 6.11E —0lgap_o3 6.02E —Olg1p_o3 5.96E —0logp_ga  5.99E —Olosp_o2  5.96E — Ol7.9p_o3
LZ09.F7 3.73E —Olgsp g2 3.87E — 0l19p_o1 469E = 01545 02 431E—Olz4p g2 3.50E —Olg7p_ga  3.77E —Olagp g2 1.64E — 01y 41
LZ09.F8 3.51E —Olg1p—g2 3.12E —0ly3p-01  3.77E — 0li.205—o1 421E = 0lygp_o2  341E —Olrgp_os 3.39E —0lgsp_o2  4.40E — 0262502
LZ09.F9  1.58E — Olgrp—o2 | 1.93E = 0l7.05—02 1.58E — 0lg.op—o2  L72E —0lgop_o2 LATE —Olyap o2 1.50E —Olysp_oa  1.26E —0lzgp_o2

2.19F — 012.35—04

1.46E — 013.4503

19.4m—04
153202

Table 6: Friedman test. Average ranks of the algorithms in expected Iy with two objectives
(distributed according to x? with 7 degrees of freedom: 8.137931034482813).

Algorithm Average Rank

MOVMO 3.828
MOEAD 3.966
SPEA2 4.310
SMPSO 4.414
NSGAII 4.483
MOCell 4.724
AbYSS 5.0
MOEAD.DRA 5.276

favor of the competing algorithm and ‘=" that no significant differences were un-
covered in the comparison.

Table 7: MOVMO pairwise comparisons - Wilcoxon test summary for the 20bj configuration.
Epsilon  Spread Hypervolume Total

+ 99 136 114 349
- 44 21 36 101
= 60 46 53 159

It is clear from Table 7 that MOVMO outperformed its competitors across each
quality indicator at least twice as much as it was beaten by them. This superiority
is more strongly evidenced in the Spread metric (where the ‘4’/‘’ ratio soars
above six times), although the additive epsilon and hypervolume summaries are
quite encouraging too. Overall, MOVMO performed very well on the ZDT, DTLZ
and WFG families whereas there is still room for improvement on the LZ09 family.
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6.2 30bj Results
6.2.1 30bj Additive Epsilon Results

Table 8 lists the median and IQR values for the I indicator of the approximation
sets computed by all algorithms in three objectives. Notice that MOVMO achieved
the lowest (best) values in three out of seventeen test functions and six second best
values. SPEA2 is the algorithm with best overall performance; it attains eleven first
places. The Wilcoxon test disclosed that MOVMO yielded statistically significant
performance at the 95% level on DTLZ5 and WFG1 but not on DTLZ6 over
SMPSO. MOVMO reports poor performance on DTLZ3 and LZ09.F6 with respect
to its peers. Nevertheless, the apparent performance gain of AbYSS (2nd place in
DTLZ4), MOEA/D (2nd place in WFG3) and MOCell (2nd place in WFG9) over
MOVMO is not statistically backed up by the Wilcoxon test.

Table 8: I;7 median and IQR values for the 30bj configuration.

MOVMO MOEAD.DRA MOEAD NSGAIL SPEA2 ABYSS MOCell SMPSO
LZ09.F6  3.54E — 011.55—01 | 2:56E — 013,100 | 253B = 0lgap—03 | 3.06E —0lg1p—02 2.70E —Olzop—0o A4.28E —0lasp—o1  3.72E —Olzsm_o1  3.88E — Ol16m—o1
DTLZl  6.31E — 0220501 2.36E —Olzgp—o1  5.10E — 0210502 6.56E — 023 1p—02 [WARBEE02; 7520l 9.88E — 0234501 3.44E — 0lyap_o1  5.76E — 027950

DTLZ2 | 1.21E=0lagp_os 1.36E —Olgsp_o3 1.34E —0lyrp_o3 1.26E—0logp o2 | TTAE—=027.9m—03  1.32E —O0losp_2 1.26E —0lysp o2
DTLZ3  6.44e+002.8c+00  6.13¢ + 002,001 | 241E = 0lagero0 | 5.45¢ + 00500400  4.20¢ + 004.0e+00  4-15¢ + 003.8¢+00 + 009.7¢+00
DTLZ4 1.09E —Ologp_o2 1.20E—0ly3p-o1 1.28E—0ligp-o1 L12E—0losp o2 [NTAIEE025 662000 1.01E —0ls2p s 1.13E —0l30p 02
DTLZ5 |[AB3EM0317p2odl] 2.64E — 0258504 2.61E —0235 04 1.06E — 0217503 7.28E — 0317503 4.76E — 0361501 | 4BTE=03915-04
DTLZ6 | 4.31E —037.6m—00 2.66E — 0270505 2.66E — 028505 8.65E —0lgam_o2 T.92E —Ologp_o2 645E —0lj15-01  1.68¢+ 0019501
DTLZT  L18E —Olrsp—o2 5A47E —0ly7p-01  B3.65E —0lo g1 1.24E —0lzap_o; [RO2ZEE0L 4pZosl] 1.27¢ +002.4c100  1.48E — 0112100
WFGl [ 414B=0l4sp-02 | 1.3le+0010p-01 134e+00155-01 5.41E —0lyigg_o2 6.36E —Olg.op_o2  445E =0l ap—o1 7-19E — 0114501
WFG2  3.52E —Olss5p-02  2.52E —O0liop—o2  2.53E —0ligp_o2 3.17E —0lyip_o2 [N2B3EE0lasp 02l 3.33E — 0153502  3.01E — 01435 02
WFG3  1.54E — 0150502 | 1.34E = 0ly6p—0a  143E —0lysp_02 1.94E —0lyip_o2 1.61E —O0l4p—_o2 2E-02 d 2
WFG4 | 3.85E —Olgsp_o2 7.54E —Olgop—o2 T7TA45E —0lyap_o2 4.07TE —0lsap_o2 [NSHSE=0l 555020 3.92E — 0153502 4.23E —0lgsp_o2
WFG5 | 4.33E —0lsgp-o02 7.80E —Olzsp_o2 7.12E —Olgep—02  4.39E —0lgop—o2 | 8.39E —0lgap—o2 | 4.51E —Olgop_o2 4.34E — Olr.sp—o2
WFG6  4.82E —0lyap-o1  TASE —Olzop—o2 7.36E —Olzap—oz 4.53E —0lg.1p_o2 | 3:23E —0lgop—o2 | 4.52E —Ol7op_o2 | 4.35E — 0l7.75—02
WFG7 | 385E —0lggp_o2 7.34E —Olgip_o2 7TALE —0lzap_oz 4.31E —0lgop_o2 | 340E —0lsap—o2 | 4.37E —O0liop_o1 4.17E —Olgsp—o2
WFGS | 7.22E —0lgup—o2 7.78E —Olagp_o2 7.77E —Olarg_oz  7.54E —0li3p_o1 | 5:30B —0lyzp—o1 | 7.26E —Olgsp_o2 7.63E — 0159502
WFGY  4.50E —0lssp_o2  6.75E —Olygp_o2  6.63E —O0lzop_oz  4.65E —0lgip o2 | 3.:32E — Olyop_g2 | 4.61E —Olysp_o2 | 4.36E — 0lg.op—o2

1.38E — 0lo4p—o2
141E — 0l455-01
1.31E — 0131502
4.662 — 031.95—01
4.40E — 0345504
1.66E — 013.95—02
1.74¢ + 07,9502
3.21E — 0lyop_02
2.88E — 0157502
4.68E — 0lg.sp_o2
4.67E — 0lg 702
4.46F — 0154502
4.89F — 012502
7.64E — 017.75-02
4.44E — Ol7.75_02

The Friedman test results on the I;7 performance metric are reported in Table

9. MOVMO is the second best-ranked algorithm following SPEA2. NSGA-II rose
to the third place despite the fact that it didn’t individually rank first or second
in any function. The two decomposition-based optimizers tail the list.

Table 9: Friedman test. Average ranks of the algorithms in expected I with three objectives
(distributed according to x2 with 7 degrees of freedom: 18.49019607843132).
Algorithm Average Rank

SPEA2 2.824
MOVMO 3.412
NSGAII 4.412

AbYSS 4.647
SMPSO 4.706
MOCell 5.0
MOEAD 5.176

MOEAD.DRA 5.824




16 Yamisleydi Salgueiro et al.

6.2.2 30bj Hypervolume Results

The hypervolume results portrayed in Table 10 show that MOVMO reaches the
best (highest) values on five out of seventeen benchmark functions, and ranked
second place on four of them. SPEA2 had the best behavior with nine first places
and two second bests.

Table 10: Igy median and IQR values for the 30bj configuration.

MOCell

SMPSO

MOVMO MOEAD.DRA MOEAD NSGAIT SPEA2 AbYSS
TZ09.F6  1.69E —0lg1p 02 | 2.80E —O0li 3502 [28TE—00li5803 1595 —0lgsm 02 2536 —0liop 02 119E —Ol735 02
DTLZ1 | 7.51E=0lgop—o1 2.11E—Olzap_o1 T746E —0lasp_o2 T.38E —Ol7op_o2 [NG6EE0T 58050 7.05E — 0170501

DTLZ2  3.84E —Olssp-o3 3.65E —Olzgp—03 3.70E —0logp_o3 3.74E —Olyop_o3 | A0AE—Olasp—gs  3.79E — Ols3g—03
DTLZ3  0.00¢ +000.0e+00  0.00¢ + 000.0e+00 | 1.82E = 0lzap—o1  0.00¢ +000.0e+00  0.00€ 4 000.0e+00  0.00¢ + 000.0e+00
DTLZ4 3.81E —Olr.sp_o3 3.61E —Ol7.op—0z 3.60E —0l7.15_02 3.76E —Olgop—o3 [NSOSE0I op201l 3.87E — 0lg.35-03
DTLZ5 [OM0B=02315%05" 8.93E — 0243504 9.00E — 02105014 9.28E —0226p_01 9.32E — 02205014 = 9.40E — 0257505
DTLZ6 | 949B — 0277505 9.14E — 0210504 9.13E — 0213505  0.00¢ +000.0c400  0.00€ 4 000.0e+00  0.00¢ + 000.0¢+00
DTLZ7 | 291~ Olgap—o3 881E — 0276502 1.76E —0lsgp_o2 2.78E —Olygm_o3 | 2.90E = 0lagp_g3 2.59E — Ol7.15—02
WFG1 | 894B 01802 | 245E —Olisp_g2 2.36E —Olyrg_o2  7.80E —0ligr_o2 6.81E — Olg. 8.82E — 0115501
WFG2  896E —0lgsp_o3 88LE —Olsop_o3 880E —Olsgp_o3 8.98E —0lgop_oz [NOMIEE0Ls, 8.98E — 016.25—03
WFG3 | 315E ~0ls3m_03 3.07E —Olazp_o3 3.07E —Olasg_o3 3.11E —0loge 2.93E — 0155503 NUTE=01535 03
WFG4  3.85E —0lssp_o3  3.22E — Olg.7p—o: E—0lgap_03 ° 3.92E — 0la3p—03  3.87E —0lg.op—03
WFG5 | 3.52E = 0lssp—03 5E — 0136503 3.68E — Ols.7p—o03 | 3.51E — 0l555-03
WFG6  3.65 ) 40E — 0162503 3.96E — 0113502 1E — Olyap—o2
WFG7 [I383E=015.052030 ° 3.31E — 013.95—03 3.82E — Ols.6p—03 3.77E — Ol7.65—03
WFGS  249E — 015603 2.25E —Olrgp_o3 2.28E — Olg.op—o3 2.73E=0111p—02  2.50E — 0191503
WFGY  359E — 01002 3.30E —Olsop_o3  3.30E —Olzap_o3  3.55E — 0lgap_o3 | 307E —0lyop o3 | 3.55E —Oliop_o2

1.47E — 015602
4.26E — 024,901
3.74E — 0l765-03
0.00e + 000.0e+00
3.77TE — 0175603
9.40F — 024.1E—05
0.00e + 000.0e+00
2.71E — 0l2.25—02
6.73E — 011.25_01
8.99E — 014.85—03
3.14F — 013,003
3.72E — 014.65—03
3.50E — 0144503
3.71E — 011 5502
3.67E — 0lg.25_03
2.48E — 016.35—03
3.61E — 0l7.75—03

T71E — 0150602
7.38E — 0112602
3.47E — 0l6.05—03
3.51E — 0l9.ap—02
3.59E — 01g.85—03
9.38E — 0212504
9.49E — 025 405
2.73E — 011202
9.23E — 022.05—02
8.83E — 01y 6503
2.92F — 017

03
3.54E — 0lg.op_o3

MOVMO achieves a statistically significant performance difference at the 95%

level over its rivals on DTLZ5, DTLZ6 and WFG1 but not over SPEA2 on DTLZ7
or WFG7. Moreover, the Wilcoxon test suggests that the slightly superior hy-
pervolume values produced by AbYSS in WFG3 (1st place), WFG4 (2nd place),
WFGS8 (2nd place) and by MOCell in WFG6 (2nd place) and WFG9 (2nd place)
are not not statistically significant to those by MOVMO. Finally, MOVMO does
not fare well with LZ09.F6 but it is not the worst there either.

The Friedman test results on the Iy performance metric for the 30bj con-
figuration are reported in Table 11.

Table 11: Friedman test. Average ranks of the algorithms in expected Iy with three objectives
(distributed according to x2? with 7 degrees of freedom: 28.338235294117517).

Algorithm Ranking
SPEA2 2.941
MOVMO 2.971
AbYSS 4.088
NSGAII 4.235
MOCell 4.588
SMPSO 5.176
MOEAD 5.882

MOEAD.DRA  6.118

6.2.3 30bj Discussion

Table 12 sums up the set of pairwise comparisons between MOVMO and the rest of
the algorithms in terms of the additive epsilon and hypervolume quality indicators
for the 30bj configuration. MOVMO'’s performance was compared to that of the
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seven state-of-the-art optimizers throughout seventeen benchmark functions (17
x 7 = 119 pairwise tests).

Table 12: MOVMO pairwise comparisons - Wilcoxon test summary for the 30bj configuration.

Epsilon  Hypervolume  Total

+ 57 83 140
- 28 17 45
= 34 19 53

Table 12 reveals that MOVMO outdid its competitors for the two quality
indicators between two and five times as much as it was defeated by them. We
may see this pattern more stressed in regards to the hypervolume metric. This is
somewhat expected as MOVMO had shown great promise regarding the spread of
its approximation sets and the hypervolume metric aims at capturing that aspect
too.

6.3 Final discussion

The no free lunch theorem explicitly states that what an algorithm gains in perfor-
mance on one class of problems it necessarily pays for on the remaining problems
[20]. According to the empirical results shown in this article, our MOVMO algo-
rithm in general reaches a good performance on the ZDT, DTLZ and WFG test
suites in two and three-objective configurations. These functions tested MOVMO'’s
performance on problems with convex, concave and disconnected Pareto Fronts.

On the other hand, MOVMO did not behave well on the LZ09 problems. This
test suite is designed to evaluate algorithms performance in problems with compli-
cated Pareto Sets and continuous, multi-modal and non-linear Pareto Fronts. In
the very article where this suite was proposed, the authors recognize that the SBX
crossover operator did not perform well in these test problems. This is mainly be-
cause, at an early stage of the search process, SBX loses diversity, which is needed
for exploring the search space effectively. MOVMO implements SBX as crossover
operator; it shows good performance on the ZDT, DTLZ and WFG test suites
without the assistance of other genetic operators such as mutation. However, the
performance of this operator deteriorates considerably when it is applied to func-
tions with epistasis [17] among variables, i.e., nonlinearities in fitness functions due
to changes in the values of interacting variables. This is because SBX always re-
duces the covariance of the offspring distribution close to zero. We hence concluded
that this operator may not be suitable for dealing with the LZ09 test instances,
which exhibit epistasis in all its functions.

To overcome this drawback, we recommend changing the type of crossover
operator (Line 12 Algorithm 1) to one that works better with LZ09 functions. For
instance, the authors in [9] report that the classical Differential Evolution (DE)
crossover operator proposed by Price et. al. in [18] rendered encouraging results
in presence of the LZ09 functions.

With this idea in mind, we conducted several experiments where the original
SBX crossover operator in MOVMO was changed to a DE-related one. This im-
plementation is hereafter called MOVMO-DE. During the experiments we tested
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several variants of DE crossover operators, parent selection strategies as well as the
inclusion or not of a mutation operator. We used the same experimental framework
outlined in Section 5 and the following parameter settings: CR = 1.0 as crossover
probability and F = 0.5 as amplification factor of the differential vector. For the
polynomial mutation operator, we considered a distribution index of n,, = 20 and
mutation rate p,, = 1/D, where D is the number of decision variables (solution
dimensionality). For a detailed explanation about the difference among several
DE crossover operators and the role of each parent selection strategy during the
recombination, we refer the reader to [10].

The best results shown by MOVMO-DE on the LZ09 test suite were obtained
with the best/1/bin DE crossover operator and the inclusion of the polynomial mu-
tation operator after DE crossover. The most successful parent selection strategy
was applying binary tournament to the solutions from the archive set and using
the local best solution n] (Line 6 Algorithm 1) and the locally produced solution
n; (Line 9 Algorithm 1) to calculate the mutation differential.

Table 13 summarizes the set of pairwise comparisons between MOVMO-DE
and MOVMO throughout the set of LZ09 benchmark functions for the 20bj con-
figuration. It is clear from Table 13 that MOVMO-DE outperformed its competitor
across each quality indicator, especially on the spread metric.

Table 13: MOVMO-DE vs. MOVMO pairwise comparison - Wilcoxon test summary for the
LZ09 test suite.

Epsilon Spread Hypervolume Total

+ 6 7 5 18
- 2 0 2 4
= 0 1 1 2

Table 14 depicts the ranks achieved by MOVMO and MOVMO-DE on the
Friedman test for the LZ09 functions over the I, Igp and Iy quality indica-
tors. In this case MOVMO-DE improved Friedman test results across all quality
indicators.

Table 14: Ranks obtained by MOVMO and MOVMO-DE according to the Friedman test for
the LZ09 test functions along the I, Isp and Iy quality indicators.

Epsilon Spread Hypervolume
MOVMO 6th 2nd 5th
MOVMO-DE 3rd 15t 4th

The experimental results indeed confirm that, after changing the crossover op-
erator, MOVMO-DE achieved a better performance on the LZ09 test suite and,
consequently, on those functions with entangled Pareto sets. It is important to
highlight that MOVMO-DE did not fare very well on the ZDT, DTLZ and WFG
test functions in comparison to the original MOVMO implementation. This sug-
gests the need to dynamically adapt the set of genetic operators during the search
process; however, such endeavor is beyond the scope of the current study.
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7 Conclusions

In this paper we have introduced MOVMO, a new multiobjective metaheuristic
optimizer based on variable mesh optimization. Our method combines typical con-
cepts from the MOO realm such as Pareto dominance, density estimation and an
external archive to ensure elitism; it also performs crossover between local and
global optima and features a dynamic population replacement. MOVMO was em-
pirically compared against seven other state-of-the-art multiobjective optimizers
on twenty-nine bi-objective and seventeen three-objective functions coming from
four popular families. The experimental evidence suggests that approximations of
the Pareto optimal front obtained via MOVMO are competitive and in many cases
outperform those produced by other techniques. Future work will concentrate on
testing MOVMO'’s behavior in presence of higher-dimensional functions as well as
its application to a real-world problem.
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